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EXTERNAL COMPARISONS WITH THE CASE-COHORT DESIGN
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The case-cohort design can be an economic aliernative 1o the standard cohort
design. Prentice {Biometrika 1986;73:1~11) showed how the case-cohort design
can be used to oblain relative risk estimates for comparisons within the cohort
being studied. In this paper, the authors consider ways in which the case-cohort
design can be used for comparing risk in exposure groups within the cohort to
the risk in an external population. The problem reduces to estimating the number
of expected cases at each exposure level in the total cohort, when exposure
status is available only for members of a subcohort, i.e., a random sample of the
total cohorl. The authors describe theoretical and empirical properties of several
variations of the design and analysis of case-cohort siudies. Empirical properties
were examined by replicating the selection of the subcohort in a study of second
cancer risk after chemotherapy for a first cancer. Use of a case-cohort design in
that study would have saved five-sixths of the cost of gathering covariate
information at the price of only an 11% less in efficiency relative fo a full cohort
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study.
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Several guestions in chronic disease epi-
demiology require the investigation of large
populations in which the incidence of the
disease of interest is low. Two examples are
the association between exposure to high
doses of ionizing radiation and incidence of
leukemia, and the effect of prevention pro-
grams on coronary heart disease mortality.

Received for publication April 28, 1986, and in final
form January 6, 1987,

* Department of Epidemiology and Biostatistics,
McGill University, Montréal, Québec, Canada.

2 Current address: National Cancer Institute, Bio-
statistics Branch, Landow Building, Room 3C18,
Bethesda, MD 20892. (Send reprint requests to Dr.
Sholom Wacholder at this address.)

Supported in part by Public Health Service grant
2R01CA-22849 from the US National Cancer Institute
and by a bourse d’été from V'Institut de recherche en
santé et en sécurité du travail du Québec.

The authors thank their colleagues at Harvard
University, McGill University, and the National
Cancer Institute for their helpful comments on the
manuscript; Celia Greenwood, University of Waterloo,
for her help with computing; and Laurie Tesseris for
assistance with the manuscript.

1198

In a cohort study of leukemia risk after
treatment for cervical cancer, Boice et al.
(1) observed 77 leukemias among 82,616
women exposed to radiotherapy. In the
Multiple Risk Factor Intervention Trial
(2), 239 coronary heart disease deaths oc-
curred among 12,866 men rendomized to
either a special intervention program or to
their usual source of health care. These two
investigations used standard epidemiologi¢
designs, viz., the cohort study and the co
trolled prophylactic trial, respectively. In
recent years, more economic approaches to
the design and analysis of such investiga-
tions have been proposed by various au-
thors. One example is the case-control-
within-cohort or synthetic case-control de-
sign described by Liddell et al. (3). The
case-cohort design described by Prentice
{4) is another alternative.

In this paper, we concentrate on external
as opposed to internal comparisons. In in-
ternal comparisons, the reference popula-
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on is a subset of the study cohort. By
ntrast, in external comparisons, a popu-
tion not studied directly by the investi-
tors is the reference group. In the first
ctions of this paper, we briefly discuss the
andard cohort design, the case-control-
ithin-cohort design, and the case-cchort
sign in the context of internal compari-
ns. We then focus on the case-cohort
sign and discuss its use in studies in
hich general population comparisons are
quired.

INTERNAL COMPARISONS
Full cohort studies

The classical approach to the investiga-
on of large cohorts is the full cohort study,
scribed in several standard textbooks of
idemiology (5-8). We use the word cohort
refer to a group of subjects who share a
mmon characteristic and are followed
fter a specified point in time for the detec-
n of new cases of disease. The common
aracteristic may be, for example, a blood
oup, employment at a particular plant,
ndomization into a clinical trial, or diag-
osis of a specific disease. The actual cal-
ndar times of entry intc the cohort often
ary among members of the cohort. We
strict our attention to studies which re-
dire long follow-up, and where time since
ntry into the cohort is important, such as
ost studies of the incidence of cancer or
f cardiovascular disease, as opposed to
ort follow-up studies such as the inves-
gation of adverse pregnancy outcomes.

Figure 1 illustrates the full cohort study.
group of subjects is followed and the
mes of incidence of new cases of disease
re ascertained. In the figure, each horizon-
] line represents a study subject. We as-
me, for concreteness, that there are 1,000
ubjects in the total cchort, and that three
f them developed the disease. In the full
ohort design, all covariates, i.e., the expo-
ures of interest and the potential confoun-
ers and effect modifiers, need to be mea-
ured and recorded for all members of the
tal cohort. The standard method of
nalysis for internal comparisons in full
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cohorts is the Cox proportional hazards
regression model (9, 10), in which a risk set
is formed at the time of occurrence of each
case of disease. At each of these failure
times, the vector of covariste values for the
case is compared with those for the other
subjects in the corresponding risk set. In
the example in figure 1, three risk sets
would be formed, one for each case of dis-
ease observed. Each risk set would include
the case and all other subjects who survived
at least until the point of diagnosis of dis-
ease in the case. The survivors to be in-
cluded in the risk sets are those subjects
who cross the dotted vertical lines in figure
1.

Case-control-within-cohort studies

Fuall cohort studies can be very expensive,
especially when the number of subjects is
very large. Two more economic options are
the case-control-within-cochort design (3)
and the case-cohort design (4).

Figure 2 illustrates how the study popu-

B Cases
------ Noncases in
Number risk set
ot
Subjects

Time Since Beginning of Follow-up

FicUrgE 1. The full cohort design.
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FiGURE 2. The case-control-within-cohort design.
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lation used in the earlier example could be
investigated with the use of the case-
control-within-cohort design. Again, all
1,000 members of the total cohort must be
followed. For each member of the total
cohort, the dates of entry, termination of
follow-up, and disease incidence, if any,
would be ascertained. For each of the three
cases, one or more controls are selected
randomly from all subjects at risk at the
time of occurrence of disease in the case.
The standard analysis method is condi-
tional logistic regression (11, 12). A mod-
erate case to control ratio can achieve con-
siderable cost savings without substantial
loss of precision (11, 12).

Case-cohort studies

Figure 3 illustrates the use of the case-
cohort design. Here, again, dates of entry,
termination of follow-up, and disease inci-
dence, if any, would be ascertained for all
1,000 members of the total cohort, and the
same three cases would be observed. In the
case-cohort design, however, a single ran-
dom sample, or subcohort, would be ob-
tained from all subjects in the total cohort.
The three solid lines in figure 3 represent
this sample.

The analysis of case-cohort studies for
internal comparisons was discussed by
Prentice (4). Risk sets are formed for each
occurrence of disease. The noncases are
those members of the subcohort at risk at
the time of diagnosis of disease in each case.

& Cases

® Noncases in
risk set

Number

of

Subjects

Time Since Beginning of Follow-up

FiGURE 3. The case-cohort design.
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Future cases in the subcohort are inclyg
as noncases; other cases are not. In g
example in figure 3, the first risk set j
ciudes one case and two noncases, while ¢
two other risk sets include one case and
one noncase each. Relative risk estimatég
can be obtained by standard methods
though the calculation of standard errors i
more complex (4). The case-cohort methad
is more economic than the full cohort study
and similar in economy to the case-contre}
within-cohort method, because exposures,
confounders, and effect-modifiers must bs
measured only for the cases of disease and
for the members of the subcohort. '
While the sample chosen for the case-
cohort study may be a simple random sanmy:
ple, a stratified random sample may bhe
advantageous. Only variables which are as-
certained for ali members of the total co+
hort, such as year of birth, can be stratifi-
cation variables. If, for example, more cases
are expected to occur in subjects who are
older at entry, the cohort could be sampled
within age strata in order to increase the
number of members of the subcohort who
will be in the age strata in which failures
are most likely to occur. In the internal
analysis, the potential risk set for each case
could then be restricted to those members
of the subcohort in the same age stratum
as the case, or to all members of the sub-
cohort, with a regression adjustment for age
(10). Selection probabilities can be set so
that the distribution of expected cases into
strata of the subcohort will be the same as
the distribution of expected cases in the
total cohort. This latter distribution, in
turn, will be similar to that of the cases,
assuming that the stratification variable
does not modify the risk of disease for
cohort members relative to the baseline risk
in the population from which expected
numbers are calculated.

EXTERNAL COMPARISONS

In the preceding paragraphs, we de-
scribed the use of the full cohort design, the
case-control-within-cohort design, and the
case-cohort design in the context of inter-
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comparisons. However, in scme inves-
ations, an external population for which
h-quality incidence data are available
be a useful reference group (5, 6). In
any cohorts, all subjects are exposed to
e degree, though the dosage, time pe-
'od, and agent may vary. Thus, an external
ulation which is presumed to be almost
ntirely unexposed is an appropriate choice
or estimation of risk due to a specified
el of exposure relative to an exposure of
aro. Bxternal comparisons, however, have
heir own limitations: most importantly,
hese comparisons may be relatively crude
ause measurements of covariates of im-
rtance may not be available for the ref-

Data gathered from either the case-
sntrol-within-cohort design or the case-

eneral population comparisens. Qur objec-
ve in the following sections of this paper
to describe how the case-cochort design
ay be used for external comparisons and
assess the precision of the relative risk
stimator from that design. The more com-
lex problem of using data from a case-
ontrol-within-cohort study for external
omparisons is the subject of ongoing re-
earch.

Full cohort studies

For external comparisons, the relative
isk for subjects with a given exposure level
the ratio of the incidence rate for subjects
n the cohort at that exposure level, relative
o the Incidence rate in a particular exter-
al population. The estimation of relative
sk based on observed-to-expected ratios
n full cohort studies is a routine procedure,
xtensively described in several textbooks
f epidemiology (6). The numerator of the
relative risk estimate RR; for the ith ex-
posure subgroup is

G =0, =2 2% O,
d j

where the subscript d represents demo-
graphic covariates such as age, sex, and
calendar vear, and the subscript j repre-
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sents the jth member of the cohort of size
J. The dot subscript represents summation.
The denominator is _
E,‘zE,i__=ZEE,d,"’—'EIdE Yidj;

d d J
that is, the expected cases at the ith expo-
sure level, which is the sum of the products
of I, the incidence rate per unit time at
demographic level d in the standard popu-
lation, and the total person-time in the ith
exposure group at demographic level d. In-
dividuals may contribute to more than one
d-specific person-time cell and each cell
may contain the contribution of many
members of the cohort. Dropping the j sub-
script for convenience, we obtain

—~ O 0
R ;= I
BB (1)
204 T Ou
o d =
T Y Ey S Yauls
d d

The circumflex above RR; indicates an es-
timate based on the total cohort.

Case-cohort studies

In case-cohort studies, the observed cases
are identified and studied exactly as in the
full cohort study. However, the procedure
used for calculation of E;, the numbers of
expected cases in full cohort studies, cannot
be applied, because the required data on all
members of the total cohort are not avail-
able. Nonetheless, case-cohort data can still
be used to estimate expected numbers of
cases in each exposure group. From equa-
tion 1,

.Ei =X Id Yid- (2)
d

To estimate E;, we need the incidence rates
I;, known from general population statis-
tics, and each of the i-d-specific sums of
person-time Yy, which are not directly
available from the data. However, the
amount of person-time for the total cohort
can be estimated in the case-cohort design
whenever the dates of entry and exit from
the cohort are known for all study subjects.
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The task is therefore to allocate the total
person-time according to exposure status.
Since the subcohort is a random sample
from the total cohort, we can treat it as a
“mini-cohort” from which person-time can
be calculated for each exposure group. Us-
ing the lower case y’s with the appropriate
subscripts to refer to person-time calcu-
lated in the subcohort rather than in the
total cohort, we can then obtain yis/y.4, the
proportion of the person-time in any ex-
posure category relative to the total amount
of person-time in the subcohort. Then
Y 4¥ia/y.c can be used to estimate Yy, and
the expected number in the ith exposure
category can be estimated as:
7
Bar=21 };ﬂi’@. (3)
d Y.a

The tilde above the E; in equation 3 and in
subsequent equations indicates values
which depend on the particular subcohort
that has been selected and which are used
to estimate unknown values in the total
cohort. Equation 3 can be rewritten in
terms of expected numbers of cases:

Y alayiala
¥.ada

Fisn=2
d

where the lower case ¢’s with the appropri-
ate subscripts refer to expected numbers of
cases calculated in the subcohort rather
than in the total cohort.

Fquations 3 and 4 describe a stratified
analysis of case-cohort data. We refer to
this method as the stratified ratio method,
because the calculation of E; partitions the
E,, obtained from the total cohort, in the
ratio eg/e.q. However, when the subcohort
from which the e ’s are calculated is a
simple random sample of the total cohort
from which the E ;’s are obtained, the ra-
tios E 4/e 4 are approximately constant over
all values of d, and equation 4 can be further
simplified to:

Ei,UR == ey = % (5)
e d €

Equation 5 gives 2 method of unstratified

ratio analysis of case-cohort data, which
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can be used when the subcohort, is a iy
random sample of the total cohort. Hy
ever, stratified random sampling ca
used to increase the probability of selecti
of subjects from strata in which the ha
line risk of disease is higher. This sho
lead to greater precision of the estimateg
expected numbers of cases because the
formation used in the analysis then focuse
more on subjects with larger contribution
to the total expected number of cases rathe
than on subjects with lesser contributions
It also may increase the precision of inter
nal estimates of relative risk, because, ag--
suming that the stratification variable ig
not an effect modifier, the members of the
subcohort and the cases will be distributed
similarly into strata. When the subcobort
has been selected with the use of stratified
sampling rather than with simple random
sampling, the ratios E /e will generally
not be constant over all d. In this case, the
stratified analysis corresponding to equa-
tion 4 roust be carried out.

The analyses described by equations 4
and 5 require knowledge of the vector d of
demographic variables for all members of
the total cohort in order to calculate the
E/’s in equation 4, and E in equation 5.
However, in a case-cohort study, some de-
mographic data may be collected only for
the cases and members of the subechort.
Then, E. cannot be obtained directly; it can,
however, be estimated unbiased as eff,
where f is the sampling fraction for selec-
tion of the subcohort from the total cohort.
Equation 5 then becomes

- ee; e;

Biux = ;} = :ff ; (6)

which is unbiased for E;. This simple
method of estimation of E; was used by
Hutchison (13) and Boice and Hutchison
(14). Smith and Doll (15) probably also
used this approach for their dose-response
analyses in their study of leukemia risk
after radiotherapy for ankylosing spondy-
litis. We refer to this approach as the un-
stratified expansion method of analysis, and
it can be used when the subcohort is a
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imple random sample of the total cohort.
1 this method of analysis, the expected
umbers derived from the total cohort are
ot used. The estimates of the ¥, based on
he expansion method are unbiased, while
he ratio estimates of the E; using equations
and 5 have an asymptotically negligible
ias (16).

A more general method which allows dif-
rent sampling fractions f; within each
emographic stratum is:

o~ eid
EL${==E‘“H
d Jd

{(7)

We refer to this last method of analysis as
he stratified expansion method.

Expressions for variance estimates, tests
f hypotheses, and confidence intervals for
xternal comparisons in case-cohort stud-
es are developed in the Appendix.

RELATIVE EFFICIENCY

It is possible to calculate the efficiency
f the case-cohort method for estimation of
he relative risk among members of the
ohort with exposure i relative to the gen-
ral population. In the full cohort design
ith a large cohort and relatively few fail-
res, the random variable O;, the observed
umber of cases at exposure level i, can be
ssumed to follow a Poisson distribution
with mean and varance \E;, where A; is
he relative risk parameter and E; is the
xpected number of exposed cases. In the
ull cobort design, E; can be treated as a
onstant. However, in the case-cohort de-
ign, E; is not directly available and an
stimate K, is obtained from the subecchort,
dding variability to the relative risk esti-
mate. The efficiency of the case-cohort de-
ign relative to the full cohort design for
his exposure level is the inverse of the ratio
f variances of the respective estimates of
he relative risks when the relative risk is
nity, or E;/[E; + var(E))].

EXAMPLE

We investigated properties of the case-
ohort design for general population com-
arisons in a cohort of 2,189 patients
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treated for Hodgkin’s disease and followed
for over 11,000 person-years. This cohort
was studied to investigate the association
between treatments for Hodgkin’s disease
and subsequent second cancer risk. Full
treatment histories and the incidences of
second cancers were obtained for all mem-
bers of the total cohort. This study was
analyzed using classical full cohort methods
{6). Incidence data from the Connecticut
Tumor Registry were used for external
comparisons. Relative risk estimates for
the internal and external comparisons are
presented in an earlier paper (17), to which
readers interested in the substantive results
should refer. We reanalyzed these data with
the use of the case-cohort design for exter-
nal comparisons in order to determine the
properties of the estimators of the expected
number of second cancers after chemother-
apy. Small discrepancies between the full
cohort analvses reported here and in Boivin
et al. (17) arose from minor differences in
inclusion criteria, starting dates, and ex-
posure definition.

Table 1 gives the distribution of study
subjects and expected cancers in the total
cohort, by age at diagnosis of Hodgkin’s
disease and year of diagnosis. All 2,189
study subjects were patients who survived
at least one year after diagnosis of Hodg-
kin’s disease. They were followed from the
date of their one-year survival through
1978, death, loss to follow-up, or diagnosis
of second cancer, whichever came first. For
all 2,189 subjects, information was obtained
on dates of entry and exit from the cchort;
date of diagnosis of second cancer, if any;
sex; and date of birth. A total of 72 cancers
were observed in the total cohort, including
18 cancers after chemotherapy, while 29.22
cancers were expected in the total cohort
on the basis of Connecticut general popu-
lation incidence rates, including 3.57 can-
cers expected after chemotherapy.

For a case-cohort study, a subcohort was
selected by obtaining a simple random sam-
ple of 288 subjects from the total cohort,
for a case to subcohort ratio of 72:288 or
1:4. Information on exposure to chemo-
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therapy was used only for these 288 subjects
and the 72 cases of second cancer, for a
maximum of 360 subjects for whom chemo-
therapy data were required, instead of 2,189
subjects in the full cohort study. In practice,
chemotherapy data on slightly fewer than
360 subjects were necessary because of the
overlap of cases and members of the sub-
cohort. Person-years and expected cancers
were then estimated for members of the
subcohort exposed to chemotherapy, and
for those not exposed. Results are given in
table 2. The expected number in the entire
subcohort was 3.385, including 0.544 after
chemotherapy. These case-cohort data
were then used to estimate the number of
cancers expected after chemotherapy in the
total cohort. The four methods of analysis
described above were used: the stratified
ratio method (SR), the unstratified ratio
method (UR), the unstratified expansion
method (UX), and the stratified expansion
method (SX), corresponding, respectively,
to equations 4-17.

To illustrate the use of the stratified
method of analysis corresponding to
tion 4, we calculated expected numbse
cancers after chemotherapy within es
the six age and calendar year strata sh

pected cases after chemotherapy (expos
= { = 1) as a proportion of all expec
cancers in each stratum of the subeoh
are the ratios of the last two columng
table 2. Each ratio is then multiplied by
number of expected cancers in that strat
in the total cohort, shown in the last

umn of table 1, to obtain the estimat
the number expected after chemother,
within each stratum in the total coh
Then E, sg, the stratified ratio estimat
E;, is the sum of these products:

E, sr = (0.000/0.303)3.09
+ (0.129/0.736)5.14 + - ..
+ (0.093/0.442)4.55 = 3.95.

TABLE 1

Study subjects and expected cancers in the total cohort, by age at diagnosis of Hodgkin's disease and year of
diagnosis, Boston, Montreal, and New York patients, 1940-1975

Age (years) at

Expected cancers All expected

diagnosis Year of diagnosis No. of subjects after chemotherapy cancers
0-39 1940-1966 389 0.000 3.09
0-39 1967-1975 1,146 0.858 5.14
40-64 1940-1966 147 0.00067 5.37
40-64 1967-1975 397 2.24 10.25
=65 1940-1966 22 0.000 0.84
=65 1967-1975 88 0.479 4.55
Total 2,189 3.57 29.22
TABLE 2

Study subjects and expected cancers in a subcohort selected for a case-cohort study, by age at diagnosis of
Hodgkin’s disease and year of diagnosis, Boston, Montreal, and New York patients, 1940-1975

Age (years) at

Year of diagnosis

No. of subjects

Expected cancers

All expected

diagnosis after chemotherapy cancers
0-39 1940-1966 46 0.000 0.303
0-39 1967-1975 158 0.129 0.736
40-64 1940-1966 14 0.000 0.276
40-64 1967-1975 53 0.322 1.580
=65 1940-1966 2 0.000 0.048
=65 1967--1975 15 0.093 0.442
Total 288 0.544 3.385
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The unstratified ratio method of analy-
s, from equation 5, and using data given
tables 1 and 2, gives

By un = (29.22)(0.544)/3.385 = 4.70.

he unstratified expansion method, from
uation 6, gives

B, ux = 0.544/(288/2,189) = 4.13,

hile the stratified expansion method from
uation 7 gives:

E. sx = 0.000/(46/389)
+ 0.129/(158/1,146) + - - -
+ 0.093(15/88) = 3.89.

For the unstratified expansion method,
e estimate of the relative risk in the ex-

ER, = 0./E,ux = 18/4.13 = 4.36.

ith s? = 0.000070, equation Al in the
ppendix gives

= 1/18 + 1.01/4.13% = 0.115.

: T~hus, a 95 per cent confidence interval for
"RRis

expilog4.36:£1.96+/0.115} or (2.24,8.48).

The test statistic for the null hypothesis of
a relative risk of unity is

x? = (18 — 4.13)*/(4.13 + 1.01) = 374.
PRECISION OF OBSERVED-TO-EXPECTED

RATIOS FROM THE CASE-COHORT
DESIGN

The example shown in table 2 is not
necessarily representative of the properties
of the case-cohort design for this data set.
We therefore replicated the selection of the
subcohort and calculated the empirical bias
and precision of the method. We obtained
300 samples of 144, 288, and 576 subjects,
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representing case to subcohort ratios of 1:2,
1:4, and 1:8, for two sampling schemes:
simple random sampling, and random sam-
pling stratified by age and calendar year,
where the sampling fraction in each stra-
tum was proportional to the number of
expected cases in the stratum. The age and
calendar year strata are shown in tables 1
and 2. For stratified random sampling, the
sampling fraction in each stratum was pro-
portional to the total number of expected
cases in each stratum. In the stratified sam-
pling scheme with a sample size of 144
subjects, for example, the number of sub-
jects sampled among those who entered the
cohort before age 40 years and before 1967
was (3.09/29.22) (144 subjects) = 16 sub-
jects.

For each replication, we obtained four
estimates of E;, the expected number of
cases after exposure to chemotherapy, ob-
tained from studying the total cohort. We
know E, for this cohort, but it will typically
not be available when the case-cohort
method is used. The relative sampling error
is E./E., the ratio of the expected numbers
of exposed subjects in the subcohort and in
the total cohort. Since the number of cases
observed among exposed is the same in the
two designs, this relative sampling error
reflects the additional variability intro-
duced by use of the subcohort in estimation
of the relative risk. We expected the aver-
age relative sampling error to be close to
unity, but the spread of this error to vary
according to subcohort size, sampling
scheme, and analysis method. To estimate
the spread, we obtained the fifth and 95th
percentiles and the empirical variances of
the relative sampling errors in our simula-
tions. These can be compared to the aver-
age values of the variances obtained with
the formulae in the Appendix. Table 3
shows results of these analyses. With sim-
ple random sampling in the selection of the
subcohort from the total cohort, the four
methods of analysis corresponding to equa-
tions 4-7 can be used. With stratified sam-
pling, only stratified analyses are valid, as
we showed in the derivation of equation 4.
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TABLE 3
Average relative sampling error By /E,

WACHOLDER AND BOIVIN

Size Case to . R Avere.\ge 5th and 951'}1 . A s
of subeohort Sampling  Analysis relative percentiles Variance of @st"@mge
subeohort ratio method* method? sampling for rplauve replications *stimated
error sampling error variance
e
144 1:2 R 5R 1.017 0.473-1.758 (.143 0.108
R UR 0.990 0.474-1.632 0.136 0.129
R UX 0.978 0.451-1.624 0.135 0.127
R SX 0.968 0.455-1.581 0.124 (.108
5 SR 1.028 0.634-1.461 0.0623 0.0644
R SX 1.018 0.601-1.450 0.0641 0.0676
288 1:4 R SR 1.025 0.625-1.431 0.0690 0.0549
R UR 1.018 0.596-1.450 0.0638 0.0626
R Ux 1.024 0.639-1.499 0.0683 0.0630
R 8X 1.014 0.636-1.452 0.0601 0.0560
S SR 1.025 0.744-1.325 0.03851 0.0292
S SX 1.022 0.732-1.321 0.0312 0.0300
576 1:8 R SR 1.023 0.753-1.314 0.0268 0.0246
R UR 1.015 0.758-1.317 0.0276 0.0268
R UX 1.022 0.764-1.319 0.0276 0.0266
R 58X 1.018 0.761-1.295 0.0252 0.0242
St SR 1.015 0.858-1.175 0.00988 0.0105
S SX 1.015 0.863-1.173 0.00931 0.0107

* R is simple random sampling; S is stratified random sampling.

+ S8R is a stratified ratio analysis, UR is an unstratified ratio analysis, UX is an unstratified expansion
analysis, and SX is a stratified expansion analysis, corresponding to equations 4-7, respectively, in the text.

i For the stratified sampling scheme, only 572 subjects were actually available because, with stratified
sampling, our plan was that 16 per cent of the subjects in the sample would come from the category 65+ years
of age, years of diagnosis 1967-1975, leading to a sample size of (0.18)(576) = 92 subjects for this category,
However, the total cohort only included 88 subjects in this age-calendar year category.

We see in table 3 that, as we expected,
average sampling errors are close to unity.
There is no clear precision advantage to
any of the analysis methods. On the other
hand, a stratified sampling design does pro-
vide a substantial increase in precision. The
averages of the variances using the formu-
lze in the Appendix are near the empirical
variances,

On the basis of data given in table 3, we
calculated that a stratified sample with a
case-to-subcchort ratio of 1:4 can result in
89 per cent efficiency since var(E,) =
E3var(E,/E,) = (3.575%)(0.0351). This loss
of efficiency is compensated for by the
economy of measuring covariates on only
about one-sixth of the subjects in the total
cohort.

DiIscUSsION

The case-cohort design is not new. It has,
for example, been used for a number of
years for external comparisons in the field
of cancer epidemiclogy (13-15). However,
only recently has Prentice (4) presented a
formal description of this design and
showed how it could be used for internal
comparisons. In cur view, one advantage of
the case-cohort design is, in contrast to the
case-control-within-cohort design, the abil-
ity to carry out external comparisons sim-
ply. In case-control-within-cohort studies,
the controls are not a random sample of
the total cohort, thereby making external
comparisons more complicated.

We reported little difference in the
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rformance of the expansion and ratio
ethods of estimation in the relatively
all exposed group. Theoretical results in
chran (16) suggest that the ratio method
il tend to ocutperform the expansion
ethod In exposure groups containing a
rge proportion of the subjects.

Stratifying in the selection of the subco-
rt on variables available for all members
the total cohort improved the perform-
ce of the case-cobort design for external
roparisons, as we expect it would for in-
rnal comparisons. Sampling individuals
sproportionately from strata in which the
haseline risk of disease is higher gives more
jrecision to external analyses than simple
ndom sampling. For internal analyses,
e individuals from strata with higher
haseline risk will tend to contribute to more
k sets when the stratified proportional
azards model (9, 10) is used, because the

to the number of expected cases.
While we stressed one advantage of the
case-cohort design over the case-control-
within-cohort design, namely, the ability to
carry out external comparisons simply,
there are other factors which may favor the
case-cohort design. One such advantage is
that in studies in which the effect of a given
exposure on disease risk is determined for
several diseases, the same subcohort can
be used repeatedly to estimate exposure-
specific expected numbers of cases of each
disease; in a case-control-within-cohort
study, a new control series matched to the
cases for the time variable is required for
each case series. Of course, with the case-
cohort design, the risk ratio estimates from
studies of various diseases will be corre-
ated, especially with subcohorts of small
- size.
A logistic advantage of the case-cohort
“design over the case-control approach is
that it may be possible to select the subco-
_hort at the outset of the study, when mem-
bers of the total cohort are identified, with-
out waiting for any processing of informa-
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tion about the case series.

There is a close relation among epide-
miologic designs used to study cchorts (18).
The full cohort design does not use any
sampling. The case-cohort design samples
randomly from the total cohort, indepen-
dently of failure times. The case-control
design samples referents at the failure
times of the cases. The difference between
the two economic designs is therefore sim-
ply whether referents are matched to cases
on survival to time of failure of the case. In
this sense, a case-cohort study may be seen
simply as an unmatched case-control-
within-cohort study, as described by
Mantel (19).

We may then ask when should the case-
control design be preferred to the case-
cohort design for external comparisons. We
conjecture that the case-cohort design is
more efficient than the case-control design
for external comparisons because the sub-
cohort provides more complete information
about the total cohort than does the set of
controls selected at failure times only. Fur-
ther work is required to compare the prop-
erties of these two designs for both internal
and external comparisons.
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APPENDIX

There is added variability in the estimation of the relative risk from case-cohort data due to the sampling
used in obtaining E;, the case-cohort estimate of E;, the expected number of cases among subjects at exposure
level ;. We now develop expressions for the variances of the four estimators E; discussed in the article, and for
the variance of the logarithm of the relative risk.

We regard the E;;, j = 1, ..., J, as a finite set of fixed constants, and the e;;, j = 1, ..., n, as a random

. J . . X
sample of the E;; selected without replacement. Since E’,-,UX = -r; ¢;., finite sampling theory (16) can be used to

obtain a variance estimate

o 11
var(E;vx) = JZ(; - _)S?; (A1)

where

By treating E, the number of expected cases in the total cohort, as a constant and using the delta method, or
following Cochran (16}, we can obtain an estimate of the variance of E; g as

P . 1Ee - | € 1 1\ . e [s* 2 2
var(Biun) = var[—'e} = E?varH = n2<— - —)Ef L [—"‘;— + 5 —f——} (A2)
e e n J e’ le; e e
where
2 2 _ 2
§7 —] [El e?; e(/njE

and ¢, the covariance of ¢;; and e ;, is

1 n
CTho1 Li eje.;— e,-,,e_/n].

Variances for &; from the stratified designs are obtained by summing stratum-specific variances.

It is convenient mathematically te address the variability of the logarithm of the estimate of the relative
risk. For full cohort studies, dropping the i subscript, and using the Poisson assumption and the delta method
(20), the asymptotic variance of log(RR) = log(0) — log(E) is 1/(AE). For the case-cohort design, log(RKR) =
log(0) — log(E). Then, by the delta method and the fact that the selection of the subcohort is independent of
disease status,

var(E)
E*

vir[log(l’fR)] = var{log(0)] + var[log(E)] = )\—IE; +
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and
var(RR) = A2var[log(ER)] = //E + Avar(E)/E>

The development above suggests an asymptotic one degree of freedom chi-square test of the null hypothesis
that the relative risk is A:
x? = [0 — MEP/IE + X var(E)]

However, if the number of expected cases AK is small, a small-sample test is called for. Confidence limits can
be obtained in the usual way from the estimate and variance of log(RR).
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